Photoinduced Reactions of 1-Acetylisatin with Phenylacetylenes

Jie Xue,† Yan Zhang,† Xiao-long Wang,† Hoong Kun Fun,‡ and Jian-Hua Xu*,†

*Department of Chemistry, Nanjing Uni*V*ersity, Nanjing 210093, People's Republic of China, and X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia*

xujh@nju.edu.cn

Received April 26, 2000

ABSTRACT Ph MeO COMe two diastereoisomers **Photoinduced reactions of 1-acetylisatin 1 with diphenylacetylenes 2a**−**2c afforded the corresponding 3-methylene-2-indolones 4a**−**4e and**

5a−**5e in 80**−**90% yields via a spirooxetene intermediate. Similar irradiation of 1 with phenylacetylene, on the other hand, resulted in efficient** formation of two diastereoisomeric dispiro[3H-indole-3,2'-furan-3',3"-(3H)-indole]-2,5',2"(2H,5'H,2"H)triones 6 and 7 via a reaction sequence **with initial formation of the spirooxetene intermediate. The regioselectivity in the photocycloaddition of 1 with phenylacetylene and the reaction mechanism for the formation of 6 and 7 are discussed.**

Photoinduced reactions of quinones¹ and aromatic ketones² with diphenylacetylene are known to give quinone methides and α , β -unsaturated ketones, respectively, via the unstable oxetene intermediates³ formed by $[2 + 2]$ cycloaddition of the carbonyl C=O bond with the acetylenic C \equiv C bond. This process can be viewed as a variant of the Paterno-Büchi reaction.4 The scope of these reactions, however, has not been extensively explored for carbonyl addends of diverse structures. 1*H*-2,3-Indoledione (isatin) derivatives have vari-

(2) Polman, H.; Mosterd, A.; Bos, H. J. T. *Rec. Tra*V*. Chim.* **¹⁹⁷³**, *⁹²*, 845 and references therein.

(3) (a) Friedrich, L. E.; Lam, P. Y. *J. Org. Chem.* **1981**, *46*, 306. (b) Friedrich, L. E.; Schuster, G. B. *J. Am. Chem. Soc.* **1971**, *93*, 4602.

10.1021/ol000110a CCC: \$19.00 © 2000 American Chemical Society **Published on Web 07/27/2000**

ous biological activities⁵ and have been widely used as precursors or building blocks of many natural and unnatural products.6 However, their photochemical reactions have scarcely been investigated.⁷ Isatin derivatives strongly absorb in the UV-visible region (λ_{max} 304 nm, ϵ_{max} 7540; $\lambda_{\text{shoulder}}$ 385 nm, ϵ 513), and their n π ^{*} triplet excited states⁸ are good electron acceptors owing to a rather high triplet energy (e.g., 64 kcal mol⁻¹ for 1 ^o and a small negative reduction potential $(-0.75V)$ for **1**, SCE).⁹ With the aim of further exploring the scope of the photoreactions of carbonyl compounds with alkynes, we have carried out an investigation of the photoinduced reactions of 1-acetylisatin **1** with diarylacetylenes **2a**-**2c** and phenylacetylene **³**.

Irradiation of a solution of **1** (0.05 M) and diphenylacetylene **2a** (0.10 M) in dry benzene under argon with light of *λ* greater than 400 nm for 24 h results in complete conversion

[†] Nanjing University.

[‡] Universiti Sains Malaysia.

^{(1) (}a) Zimmerman, H. E.; Craft, L. *Tetrahedron Lett*. **1964**, 2131. (b) Bryce-Smith, D.; Fray, G. I.; Gilbert, A. *Tetrahedron Lett*. **1964**, 2137. (c) Bryce-Smith, D.; Gilbert, A.; Johnson, M. G. *Tetrahedron Lett*. **1968**, 2863. (d) Farid, S.; Kothe, W.; Pfundt, G. *Tetrahedron Lett*. **1968**, 4147. (e) Pappas, S. P.; Portnoy, N. A. *J. Org. Chem.* **1968**, *33*, 2200. (f) Bardamova, M. I.; Berus, E. I.; Vlasov, A. A.; Kotlyarevskii, I. L. *Iz*V*. Akad. Nauk SSSR Ser. Khim*. **1977**, 912 (Russ). (g) Bosch, E.; Hubig, S. M.; Kochi, J. K. *J. Am. Chem. Soc.* **1998**, *120*, 386. (h) Kim, A. R.; Mah, Y. J.; Shim, S. C.; Kim, S. S. *J. Photosci.* **1997**, *4*, 49; *Chem. Abstr.* **1997**, *127*, 307063c.

⁽⁴⁾ For reviews, see: (a) Arnold, D. R. *Ad*V*. Photochem*. **¹⁹⁶⁸**, *⁶*, 301. (b) Jones, G., II. *Organic Photochemistry*; Padwa, A., Ed.; Dekker: New York, 1981, 5, 1. (c) Schreiber, S. L.; Porco, J. A. Jr. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: New York, 1991; Vol*.* 5, p 151.

of **1** and the formation of *E*- and *Z*-3-(benzoylphenylmethylene)-2-indolones **4a** (43% yield) and **5a** (37% yield). These

two products could not be fully separated by flash chromatography on silica gel; thus this ratio was determined by ¹H NMR measurement of the product mixture. An X-ray crystallographic analysis of **4a**, obtained by fractional crystallization, showed that it has the *Z*-configuration (Figure 1). These

Figure 1. ORTEP drawing of compound **4a**.

quinone methide products have a more extended *π*-conjugation system than that of **1** and are brightly yellow-colored.

Since these compounds have strong absorptions in the wavelength region used for photolysis, photoinduced *E*/*Z*isomerizations occur after their formation. Consequently, the *E*/*Z* product ratio is the result of secondary photointerconversion between **4a** and **5a**. By analogy with reactions of photoexcited quinones with diphenylacetylenes, we propose that **4a** and **5a** are derived by $[2 + 2]$ cycloaddition of the acetylene to the carbonyl C=O bond in the $n \rightarrow \pi^*$ triplet state of **1**, followed by electrocyclic ring opening of the oxetene intermediate **8a**.

Photoinduced reactions of **1** with the monosubstituted diphenylacetylenes **2b** and **2c** were also investigated. Irradiation of a benzene solution of **1** (0.05 M) with **2b** (0.1 M) gives the quinone methides **4b**, **4c**, **5b**, and **5c** in a ratio of 16:9:3:2 and a total yield of 90%. These products derive from the two regioisomeric spirooxetene intermediates. Isomers **4b** and **5b**, obtained from the oxetene intermediate with the methoxy-substituted phenyl linked to C_3 at the oxetene ring, are in a slight excess over isomers **4c** and **5c** with a ratio $(4b + 4c)/(5b + 5c)$ of 19/11. In each case, the *Z*-isomer predominates over the *E*-isomer. Photoreactions of **1** with **2c** also give the four possible quinone methides, **4d**, **4e**, **5d**, and **5e**, in a total yield of 84% and a ratio of 2.8:5.4:1:1.8.

These reactions allow efficient access to 3-arylydin-2 indolone derivatives, which are important starting materials for the synthesis of spirocyclohexenindole derivatives. $10-12$

We have also found that, in sharp contrast to the sluggish reactions of excited quinones¹ and aromatic ketones² with phenylacetylene, photoinduced reactions of 1-acetylisatin with phenylacetylene proceed smoothly to give the diastereoisomeric 2:1 coupling products **6** (52% yield) and **7** (27% yield) in a rather high total yield. The steric structure of **6**

was established by an X-ray crystallographic analysis (Figure 2) which demonstrated that in this racemate the three chiral

⁽⁵⁾ See, for example: Bieck, P. R.; Antonin, K. H.; Schulz, R. In *Monoamine Oxidase*; Yasuhara, H., Ed.; VSP: Utrecht, The Netherlands, 1993; p 177.

⁽⁶⁾ For reviews, see: (a) Popp, F. D. In *Ad*V*ances in Heterocyclic Chemistry*; Katritzky, A. R., Boulton, A. J., Eds.; VSP Academic Press: New York, 1975; Vol. 18, p 1. (b) Shvekhgeimer, M. A. *Khim. Geterotsikl. Soedin.* **1996**, 291 (Russ); *Chem*. *Abstr*. **1996**, *125*, R195450b.

⁽⁷⁾ Haucke, G.; Seidel, B.; Graness, A. *J. Photochem.* **1987**, *37*, 139. (8) Kuboyama, A.; Yamazaki, R.; Yabe, S.; Uehara, Y. *Bull. Chem. Soc. Jpn.* **1969**, *42*, 10.

⁽⁹⁾ Acetylisatin has no measurable phosphorescence either at room temperature or at 77 K in glassy ethanol. Its triplet energy was estimated to be ∼64 kcal/mol by quenching experiments with a series of triplet quenchers of different triplet energies. Photoreaction of **1** with phenylacetylene was found to be fully quenched by naphthalene $(E_T: 60.9 \text{ kcal/mol})$, diphenylacetylene (*E*T: 62.5 kcal/mol) and *p*-hydroxydiphenyl (*E*T: 63.6 kcal/mol) and not able to be quenched by *m*-diphenylbenzene $(E_T: 64.3)$ kcal/mol), biphenyl (E_T : 65.7 kcal/mol), and benzophenone (E_T : 68.5 kcal/ mol) in the wavelength region used for photolysis. The reduction potential $(E_{1/2}^{x})$ of 1-acetylisatin **1** was measured by cyclic voltammetry to be -0.75V (SCE) in MeCN.

^{(10) (}a) Beccalli, E. M.; Clerici, F.; Gelmi, M. L. *Tetrahedron* **1999**, *55*, 8579. (b) Wenkert, E.; Liu, S. *Syntheses* **1992**, 323. (c) Grigg, R.; Stevenson, P.; Worakun, T. *Tetrahedron* **1988**, *44*, 2049. (d) Richards, C. G.; Turston, D. E. *Tetrahedron* **1983**, *39*, 1817.

⁽¹¹⁾ Joshi, K.; Jian, R.; Chand, P. *Heterocycles* **1985**, *23*, 957 and references therein.

⁽¹²⁾ Flann, C. J.; Overman, L. E.; Sarkar, A. K. *Tetrahedron Lett*. **1991**, *32*, 6993 and references therein.

carbon atoms C_7 , C_{12} , and C_{22} (following the numbering scheme in Figure 2) have the *S*,*R*,*R* and *R*,*S*,*S* configurations,

Figure 2. ORTEP drawing of compound **6**.

respectively, and the two isatin frameworks are staggered in the opposite direction. Steric consideration suggests that **7** should be another racemate with the C_7 , C_{12} , and C_{22} having *R*,*S,R* and *S*,*R*,*S* configurations, respectively, so that the two isatin frameworks are also staggered with respect to each other. The other two possible racemates were not found.

Products **6** and **7** are proposed to be formed by the mechanism shown in Scheme 1. The structures of products **6** and **7** indicate that the primary spirooxetene intermediate has a regiochemistry as shown in **8b**. This regioselectivity can be rationalized by consideration of the frontier molecular orbital (FMO) interactions¹³ of the two addends. For this purpose, ab initio calculations on **1** have been carried out by using Gaussian 94 and a 6-31G basis set.¹⁴ The calculated HOMO energy and the coefficients are shown in Figure 3

together with that of phenylacetylene.¹⁵ Peterno-Büchi reactions of n*π** triplet carbonyl compounds with alkene are initiated by bonding between the low-lying half filled n orbital on the excited ketone oxygen (the original HOMO) and the occupied π orbital (the HOMO) of the alkene.¹⁶ It is shown in Figure 3 that in this $LSOMO₁(HOMO₁)$ - $HOMO₃$ interaction, maximum positive overlap demands a regioselectivity in agreement with that found in **8b**. This regioselectivity is also consistent with the formation of the most stable 1,4-diradical intermediate.

Figure 3. FMO interactions between **1*** and **3**.

Following the formation of the α , β -unsaturated aldehyde **9** from the spirooxetene intermediate, hydrogen abstraction by another $31*$ from the aldehydic C-H bond gave a triplet radical pair, **10**. Similar hydrogen abstractions of n*π** triplet carbonyl compounds from an aldehyde in which the $(O=)C-H$ bond has an especially low bond dissociation enthalpy $(87 \text{ kcal/mol})^{17}$ have been reported such as in the

^{(13) (}a) Fleming, I. *Frontier Molecular Orbitals and Organic Reactions*; Wiley: Chichester, 1978; Chapter 6, Section 6.3.1-6.3.3. (b) Klessinger, M.; Michl, J. *Excited States and Photochemistry of Organic Molecules*; VCH: Weinheim, 1995, Section 7.4.4, p 424.

⁽¹⁴⁾ Frisck, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defress, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. GAUSSIAN 94, RevisionB. 3, Gaussian, Inc., Pittsburgh, PA, 1995.

⁽¹⁵⁾ Dieter, R. K.; Balke, W. H.; Fishpaugh, J. R. *Tetrahedron* **1988**, *44*, 1915.

⁽¹⁶⁾ Turro, N. J.; Dalton, J. C.; Dawes, K.; Farrington, G.; Hautala, R.; Morton, D.; Niemczyk, M.; Schore, N. E. *Acc. Chem. Res.* **1972**, **5**, 92.

⁽¹⁷⁾ Mcmillen, D. F.; Golden, D. M. *Annu. Re*V*. Phys. Chem.* **¹⁹⁸²**, *³³*, 493.

coupling reactions of triplet quinones with aldehydes.¹⁸ Intersystem crossing and radical combination in **10** followed by intramolecular nucleophilic attack of the hydroxy group toward the ketene functionality furnish the products.

The principal n (ketone) $-\pi$ (alkene) orbital interaction in the Peterno-Büchi reaction of $n\pi^*$ triplet ketones with alkenes implies that the charge transfer interaction between the two addends plays important role in these reactions. Although a complete electron transfer as evidenced by direct detection of ion radical pairs (as in the photocycloadditions of α -diketones with the highly electron rich enol ethers¹⁹ and dichlorobenzoquinone with diarylacetylenes^{1g} in polar solvent) is less common, quenching rate constants of ketone triplets by alkenes have been found to correlate with the alkene ionization potential.^{19,20} The feasibility of the reactions of ³**1*** with phenylacetylene, in contradiction to the low reactivity of quinones and aromatic ketones toward the same alkyne, could therefore be attributed to the stronger electron acceptor ability of ³ **1***, which makes the electron (charge) transfer interaction with the alkyne more likely to take place.

As an example, the free energy change for electron transfer (∆*G*ET) between phenylacetylene (*E*1/2ox: 2.04 V, SCE, MeCN)²¹ and triplet benzoquinone ($E_{1/2}$ ^{red}: -0.57 V, SCE; $E_T \sim 50$ kcal/mol)—the strongest excited electron acceptor of all carbonyl compounds whose photoreactions with phenylacetylene have been investigated-is 19 kcal/mol in benzene as estimated by the Weller equation,²² while ∆*G*_{ET} between ³1^{*} and **3** is 9 kcal/mol. However, the positive ΔG_{ET} value and the nonpolar solvent used suggest that ion radical formations are not involved in the reactions of **1** with phenylacetylene.

The mechanistic details and synthetic applications of these reactions are being further investigated.

Acknowledgment. This work was supported by the National Natural Science Foundation of China (29772016).

Supporting Information Available: Experimental procedures and full characterization for compounds **4a**, **4b**, **4e**, **6**, and **7**. Crystal data of **4a**, **4b**, and **6**. 1H NMR spectra for compounds **4a**, **4b**, **4e**, **6**, and **7**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL000110A

^{(18) (}a) Kraus, G. A.; Liu, P. *Tetrahedron Lett.* **1994**, 7723. (b) Kraus, G. A.; Kirihara, M. *J. Org. Chem.* **1992**, *57*, 3256.

⁽¹⁹⁾ See for example, Gersdorf, J.; Mattay, J.; Görner, H. *J. Am. Chem. Soc.* **1987**, *109*, 1203.

^{(20) (}a) Schore, N. E.; Turro, N. J. *J. Am. Chem. Soc.* **1975**, *97*, 2482. (b) Monroe, B. M.; Lee, C. G.; Turro, N. J. *Mol. Photochem.* **1974**, *6*, 271.

⁽²¹⁾ Klett, M.; Johnson, R. P. *J. Am. Chem. Soc.* **1985**, *107*, 6615. (22) Weller, A. *Z. Phys. Chem.* (*Wiesbaden*) **1982**, *133*, 193.